

Best Practices for Managing Asset Life Cycle Cost

WASHINGTON METROPOLITAN AREA TRANSIT AUTHORITY (WMATA)

Background

Metrorail

- Size -106.3 miles and 86 stations
- Annual Ridership 217 million trips
- Average Weekday Ridership 744 thousand
- Fleet Size 1,142 rail cars

Metrobus

- Size 323 routes on 169 lines
- Annual Ridership 125 million trips
- Average Weekday Ridership 436 thousand
- Fleet Size 1,536 buses

Background

MetroAccess

- Size provides trips that begin and end less than 3/4 of a mile from a Metrorail station or bus route within the Washington Metropolitan Area Transit Zone
- Annual Ridership 2.3 million trips
- Average Weekday Ridership 7 thousand
- Fleet Size 600

FY2013 Budget

- Capital Budget \$905 million
- Operating Budget \$1.576 billion

Asset Life Cycle Cost

Complete View of Asset Life Cycle Cost

Capturing Asset Life Cycle Cost

Operation and Maintenance Cost (Maximo and other systems)

- Routine Cost Maintenance Cost
- Service Disruption

Age and Reliability (Capital Budget Request – Decision Lens)

Asset Replacement/Renewal/Disposition (PeopleSoft)

Life Cycle Management Process

Policies, Procedures, and Management

Inventory of Assets

Data Collection and Condition Assessment

Third Party Condition (TGV, Holland, Sperry, Etc.)

Work (Corrective and Preventive)

Inspection (Track Walker)

Method to Store and Analyze

Maximo
PeopleSoft
Fleet Watch
Rail Performance
Monitoring
Optram

Example of Cost Collection

Example of Cost Collection

Asset Name: - [Meters	-1	ication	
	B2000								
Asset: I	B2000	2000, BUS, ORION	I VI, LOW FLOOR, 4	•					
Belongs To:	>>								
Domicile Location: (6046	T38, CARMEN TUR	RNER FACILITY, PEN	INSY DR BUS STORAGE					
Operational Status:	REM FR SER	REMOVED FROM S	SERVICE						
Status Reason:	STORAGE >>	PLACED IN RESER	:VE		Rail Car Res				
Facility Location	P				Posit		>>		
Tag/Alias						.ine:	>>		
Barcode:						ard:	>>	,	
					RPM Restrict	tion:			
					Restriction D	ate:			
					Chain Mark	er Location			
Maintenance Office:					Start Locat	ion			
	BMNT-BMNT-AD	MNT-ADMN PUS MAINTENANCE ADMINISTRATION				Chain Marker:	ain Marker:		
Owning Office:	BMNT-BMNT-BM	T PUS MAINTENANCE				Offset(ft):			
						Y-Offset(ft):			
Maintenance Cost				t	□ Details				
Total Cost: 1	137,811.1200)				Year: 2	000		
YTD Cost:	76,585.5000					Make: C	RION VI		

Example of Data Analysis of Cost

Fleet Age			SUBFLEET		Miles	Fuel Gallons	Fuel \$ Cost	Fuel Cost	Total \$ Cost	Avg MPG	Cost Per Mile (Includes Labor, Materials, Tools, Services, Fuel,
2006 4	ı	CLEAN DIESEL	New Flyer (2006) 61, 6200 Clean Diesel	FLEET 37	4,310,550	1,217,383	2,678,243	2.20	5,228,167.35	3.54	\$ 1.21
2001 9	,	CNG	New Flyer (2001-2002) 23, 2400 CNG	FLEET 28	4,871,058	1,991,662	3,345,993	1.68	6,135,726.45	2.45	\$ 1.26
2002 8	B	CNG	New Flyer (2002) 2400 CNG JOhn Deere	FLEET 29	110,667	44,950	75,516	1.68	120,085.96	2.46	\$ 1.09
2005 5	5	CNG	Orion VIII (2005) 2500 CNG 40ft. Cummins	FLEET 31	3,824,621	1,180,451	1,983,157	1.68	4,225,234.08	3.24	\$ 1.10
2005 5	5	CNG	Orion (2005) 3000 30ft.	FLEET 32	938,326	314,872	528,985	1.68	1,078,278.84	2.98	\$ 1.15
2005 5	5	CNG	Orion VII (2005) 2616-2685 CNG John Deere	FLEET 33	2,085,381	607,352	1,020,352	1.68	2,413,499.36	3.43	\$ 1.16
2005 5	5	CNG	Orion VII (2005) 2700 40ft.	FLEET 34	1,175,675	280,598	471,405	1.68	1,039,564.11	4.19	\$ 0.88
2007 3	3	CNG	New Flyer 2800 CNG	FLEET 38	384,527	178,735	300,274	1.68	807,572.52	2.15	\$ 2.10
2008 2	2	CNG	NABI 5400 60 FT BRT	FLEET 39	347,383	200,932	337,565	1.68	773,291.41	1.73	\$ 2.23
1997 13	3	DIESEL	Orion V (1997) 42, 43, 44/40ft	FLEET 22	4,203,651	1,095,606	2,410,332	2.20	5,542,466.22	3.84	\$ 1.32
1997 13	3	DIESEL	Orion V (1997) 30ft.	FLEET 23	1,361,595	423,901	932,582	2.20	2,112,806.29	3.21	\$ 1.55
2000 10	0	DIESEL	Orion VI (2000) Low Floor	FLEET 25	2,229,177	571,538	1,257,383	2.20	2,977,243.38	3.90	\$ 1.34
2000 10	0	DIESEL	Orion V (2000) 2100 40ft.	FLEET 26	3,015,386	923,979	2,032,754	2.20	4,295,457.25	3.26	\$ 1.42
2003 7	,	DIESEL	Neoplan (2003) 5300 60ft.	FLEET 30	326,428	158,828	349,422	2.20	714,051.81	2.06	\$ 2.19
2006 4	ı	HYBRID	New Flyer (2006) 6000 Hybrid	FLEET 27	1,887,460	421,346	926,962	2.20	1,923,000.56	4.48	\$ 1.02
2009 1	ı	HYBRID	New Flyer 37ft Hybrid	FLEET 42	539,881	132,552	291,615	2.20	544,160.15	4.07	\$ 1.01
2009 1	ı	HYBRID	New Flyer BRT (6301-6461)	FLEET 43	4,945,896	1,137,171	2,501,776	2.20	4,716,552.39	4.35	\$ 0.95
2009 1	ı	HYBRID	New Flyer BRT 62ft (5431-5452)	FLEET 44	618,085	157,977	347,549	2.20	694,248.70	3.91	\$ 1.12
2010 0)	HYBRID	New Flyer BRT (6462-6609)	FLEET 45	5,620,133	1,336,303	2,939,866	2.20	4,925,327.25	4.21	\$ 0.88

Management of Life Cycle Cost – Key Component

- 1. Ability to identify the lowest maintainable element
- 2. Investigation of Service Disruptions to determine causes
 - Reliability Analysis
 - Engineering Modifications to improve reliability

Benefits and Challenges

Benefits

- Ability to track rising operating and maintenance cost
- Ensures that prescribed maintenance is done
- Ability to direct resources to priority needs
- Have a database of the asset life expectancy based on age

Challenges

- Ability to identify the lowest maintainable asset element, similar to rolling stock
- Refine asset life expectancy based on performance
- Determining the optimal schedule to perform the optimal work

Capturing asset life-cycle cost - Future

WMATA ASSET LIFECYCLE MANAGEMENT PROCESS

Capturing Asset Life Cycle Cost - Future

Operation and Maintenance Cost (Maximo)

- Routine Cost - Maintenance Cost - Service Disruption

More Monitoring and Reliability Analysis on Asset Components (influence projects submitted during Budget Call)

Asset Replacement/Renewal/Disposition (PeopleSoft)

Benefits and Challenges - Future

Benefits

- Able to identify rising operating and maintenance cost by lowest maintainable element of the asset
- Historical data
 - Based on performance instead of age and service disruption

Changes

- Establish enterprise wide policies and procedures
- Set performance standards and operational goals for the lowest maintainable element of the asset
 - Including infrastructure assets
- Monitor performance
- Predict preventive maintenance needs
- Determine the optimal schedule to perform the optimal work

